PROPOSAL TO THE 7th EDITION OF FLORIDA FIRE PREVENTION CODE

PART I

TRANSMIT TO:
Division of State Fire Marshal
Casia Sinco
200 E. Gaines Street
Tallahassee, FL 32399-0342

Fax: 850/414-6119
E-mail: casia.sinco@myfloridacfo.com

NOTE: If you need further information on this process, please contact the Fire Prevention Bureau at 850/413-3619.

Please review the evaluation criteria (Part II) and Fiscal Impact Statement before completing this proposal. A separate submittal is required for each proposed amendment.

Type or print legibly in black ink.

Date: June 27, 2019 Proponent: Kevin Schwartz Tel. No. 727-290-8238

E-Mail: Kevin.Schwartz@ValetLiving.com

Company: Valet Living LLC

Street Address: 100 S. Ashley Drive, Suite 700

City: Tampa State: FL Zip: 33602

Organization Represented (if any) N/A

Local Ordinance No.: N/A Jurisdiction: N/A Section/Paragraph: N/A

NFPA Standard No. and edition year: NFPA-1 Section/Paragraph: 663.202 Sect 1, sub (20)

Indicate One (Designate by “X” at the end of the line):
1. Revise section to read: 3. Delete section without substitution:
2. Add new section to read: 4. Delete section and substitute the following: X

Proposal (underline proposed new wording or strike-through the wording to be deleted):

(20)(a) Combustible trash in means of egress. Combustible trash or recyclable materials in containers meeting the subsections below that stand upright on their own and do not leak liquids shall not be placed in exits, exit passageways, in enclosures for stairways or ramps, in corridors, in elevator lobbies or on egress balconies except as permitted by the following:

1. The maximum doorstep refuse and recycling collection container size does not exceed 15 gallons.

2. Waste, which is in a doorstep refuse and recycling collection container, is not placed in the exit access corridors for single periods exceeding 5 hours.

3. Doorstep refuse and recycling collection containers, with or without refuse or recycling materials, do not occupy the exit access corridors for single periods exceeding 15 hours.

4. Trash or recyclable materials in containers awaiting collection shall only be placed in an exit passageway shall not obstruct the minimum egress width required by Section 14.7.4.
5. Management staff have written policies and procedures in place and enforce them to ensure compliance with this paragraph, and, upon request, provide a copy of such policies and procedures to the authority having jurisdiction.

6. Trash or recyclable materials awaiting door-step trash collection shall be placed completely inside of one or more containers with a closed lid that complies with subsections below. Additional trash or recyclable material placed outside of compliant containers are prohibited in exits, exit passageways, corridors or egress balconies.

7. Door-step trash collection containers. Containers used for door-step trash collection shall not exceed a capacity of 2.0 cubic feet (15 gallons, 0.06 cubic meters) and shall be provided with tight-fitting or self-closing lids. Containers and lids shall comply with the following:

 a. Containers and lids located in an area that is protected by fire sprinklers in shall be constructed entirely of noncombustible materials or materials that meet a peak rate of heat release not exceeding 300 kW/m2 when tested in accordance with ASTM E 1354 at an incident heat flux of 50 kW/m2 in the horizontal orientation. Containers and lids shall be listed or bear the label of an approved agency that validates compliance with this requirement.

 b. Containers and lids located in an area that is not protected by fire sprinklers shall be constructed entirely of noncombustible materials or materials that meet a peak rate of heat release not exceeding 150 kW/m2 when tested in accordance with ASTM E 1354 at an incident heat flux of 50 kW/m2 in the horizontal orientation. Containers and lids shall be listed or bear the label of an approved agency that validates compliance with this requirement.

Statement of Problem and Substantiation for Proposal (Note: State the problem that will be resolved by your recommendation; give the specific reason for your comment including copies of tests, research papers, fire experience, etc. If more that 200 words provide an abstract and describe the source document.) (Must be filled in to be considered):

Door-step trash collection services have become common in many R-2 occupancies during the last 24 years, with more than 1.5 million units in practically all 50 states including 205,000 units being served by the petitioner in Florida, which represents an estimated 80 percent of Florida units being currently served. Occupants receiving this service place trash and recyclables for brief periods in the corridors or breezeways outside of their apartments to be picked up by a collection service on a regular scheduled basis.

In 2018, the Florida Legislature passed a bill, signed into law by the governor, regulating the service for the first time. The intention of the legislation was to allow the apartment industry and the OSFM another code cycle to promulgate more detailed rulemaking based on data not readily available in time for the 6th edition adoption process. That proposed language and data are contained in this proposal.

The standard being offered on containers was developed by the International Code Council Fire Code Action Committee after much deliberation. This standard is much more rigorous than the standard currently contained in the code (IFC). The code applies the standard being offered in this request to much larger containers, and only at the 300 kW/m2 level. And nowhere in the code is there a requirement for any waste container to meet the 150Kw/m2 standard. This would be far in excess of what the code requires for the application.

This proposal includes certified lab testing results on the proposed containers and a survey of combustible container language used throughout the IFC. Petitioner is prepared to engage the OSFM with any submittal information or documentation required under this process that if believes is missing from this request or requires more explanation.
PROPOSAL TO THE 7TH EDITION OF FLORIDA FIRE PREVENTION CODE

Kevin Schwartz
Signature (Required)

To be considered, proposals must be received by July 1, 2019

PART II

<table>
<thead>
<tr>
<th>FLORIDA FIRE PREVENTION CODE</th>
<th>EVALUATION CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOG NUMBER</td>
<td></td>
</tr>
</tbody>
</table>

The base codes for the Florida Fire Prevention Code shall be NFPA-1, 2018 and NFPA-101, 2018

<table>
<thead>
<tr>
<th>IMPACT (select one)</th>
<th>STATEWIDE: X</th>
<th>COUNTY:</th>
<th>CITY:</th>
</tr>
</thead>
</table>

Describe the geographical area of impact:

Statewide

1. The proposal shall identify the code section or local ordinance to be modified.
2. The proposal (Part I and Part II) along with Financial Impact Statement may be submitted electronically; however, a hard copy is required as follow-up.

Submit this evaluation with each proposed amendment.

1. How does the proposal strengthen the base code to enhance safety in Florida?

The proposal adds safety features to the current law, which would largely impose the eventual retrofit of the entire collection system with fire-retardant containers where none exist now.

2. Is the proposal easy to understand and how does it contribute to a user-friendly code?

Yes. The proposal provides necessary enforcement guidance for apartment owners, providers and AHJs.

3. Document the proposal's technical merit and how it is supported by a scientific basis?

Please see accompanying testing lab documentation on fire-retardancy of proposed containers.

4. Describe how will the proposal be enforceable?

The proposal is enforceable by the apartment owner, the property management, and the AHJ as it will provide clear guidelines of criteria that must be met in the field.

5. How does the proposal affect Florida's diverse conditions such as climate, construction and population?

No impact.
PROPOSAL TO THE 7th EDITION OF FLORIDA FIRE PREVENTION CODE

Fiscal Impact Statement

Provide the estimated cost of the proposed amendment to the Florida Fire Prevention Code for each of the following questions. Cost data should be accompanied by a list of assumptions and support documentation.

1. Will the proposed amendment have an impact on the local entity relative to the implementation and enforcement of the proposed amendment?

 X None
 ____ Minimal, Provide a brief explanation:
 ____ Other, Provide an explanation for estimate and methodology used:

2. Will the proposed amendment have an impact on the business/property owner relative to the cost of compliance with the proposed amendment?

 ____ None
 X Minimal, Provide a brief explanation:

 Fire-retardant containers will increase compliance costs for service providers not exceeding an aggregated estimated cost of $2.5 million industry wide over the phase-in period for retrofitting containers.
 ____ Other, Provide an explanation for estimate and methodology used:

3. Will the proposed amendment have an impact on small counties or small cities?
 (A "small city" is defined by section 120.52, F.S., as any municipality that has an un-incarcerated population of 10,000 or less according to the most recent decennial census. A "small county" is defined by section 120.52, F.S., as any county that has an un-incarcerated population of 75,000 or less according to the most recent decennial census.)

 X No adverse impact on small cities or small counties
 ____ Minimal, Provide a brief explanation:
 ____ Other, Provide an explanation for estimate and methodology used:

Provide a good faith estimate of the number and types of affected persons/entities:

(1) The number of individuals and entities likely to be required to comply with the rule:

 Approximately 800 apartment property owners currently across the state estimating 600,000 residents.

(2) A general description of the types of individuals likely to be affected by the rule:

 Apartment owners, managers, residents, AHJs.
October 9, 2018

Mr. Thomas M. Fitzgerald
T.M. Fitzgerald & Associates | TMF Corporation
850 West Chester Pike, Suite 200, Havertown,
PA 19083

RE: CONE CALORIMETER TEST RESULTS FOR PROJECT, VTB-0617, WITH NON-HALOGENATED FLAME RETARDANT, APT-0385, FOR USE IN PLASTIC TRASH RECEPTACLES

Mr. Fitzgerald:

The purpose of this letter is to provide you with the ASTM E1354 cone calorimeter report of results from recent testing of plastic samples for use in fabricating trash receptacles with improved fire performance.

Qualifications

Fire and Materials Research Laboratory LLC (FMRL) in Livonia, Michigan is an engineering consulting firm specializing in fire investigation, research and testing. FMRL is a forensic laboratory routinely characterizing the composition and response of various materials to heat and fire exposure. FMRL performs testing and analyses for government and major corporations and for compliance with Codes and standards. FMRL's principal, Dr. Elizabeth Buc is a chemist, materials engineer, licensed professional engineer and certified fire investigator with over 20 years of professional experience in the fire sciences.

Purpose

The purpose of the cone calorimeter testing was to characterize and compare the heat release rate of a baseline polypropylene plastic (Bapolene 5065NB) and plastic samples prepared with suitable loading of APT-0385 non-halogen flame retardant. Specifically, the FR materials were examined for compliance with an IFC regulation for certain plastic trash receptacles that require the peak heat release rate less than 150 kW/m² when exposed to a 50kW/m² radiant heat source using ASTM E1354 (2017) Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter.
Cone Calorimeter Testing

The FTT cone calorimeter was calibrated and ASTM E1354 testing was performed on a total of six (6) baseline plastic samples and 6 (six) samples with suitable loading of APT-0385 at 50kW/m² incident radiant heat flux on October 5, 2018. All testing was documented with video recordings.

Description of Samples

Twelve (12) black plastic samples, 6 baseline and 6 with suitable loading of APT NHFR, were cut from trash receptacle components to 4-inch square test specimens. Both the baseline and APT-0385 samples were prepared according to the following processing parameters: temperature: 460 to 535°F; injection pressure: 1800 psi; packing pressure: 1100 psi; hold pressure: 560 psi; back pressure: 0 PSI; fill time: 4 seconds; and cushion: 0.5 inch.

The thickness and mass of each sample were recorded using calipers and a laboratory scale, respectively. The sample identification and data were entered into the ConeCalc™ software. The samples, summarized in Table 1, included:

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Mass (g)</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPP 1</td>
<td>20.42</td>
<td>2.03</td>
</tr>
<tr>
<td>CPP 2</td>
<td>26.51</td>
<td>2.56</td>
</tr>
<tr>
<td>CPP 3</td>
<td>20.36</td>
<td>2.02</td>
</tr>
<tr>
<td>CPP 4</td>
<td>20.10</td>
<td>2.01</td>
</tr>
<tr>
<td>CPP 5</td>
<td>23.74</td>
<td>2.32</td>
</tr>
<tr>
<td>CPP 6</td>
<td>25.98</td>
<td>2.58</td>
</tr>
<tr>
<td>APT NHFR-CPP 1</td>
<td>24.86</td>
<td>2.45</td>
</tr>
<tr>
<td>APT NHFR-CPP 2</td>
<td>20.52</td>
<td>2.04</td>
</tr>
<tr>
<td>APT NHFR-CPP 3</td>
<td>25.98</td>
<td>2.58</td>
</tr>
<tr>
<td>APT NHFR-CPP 4</td>
<td>23.86</td>
<td>2.43</td>
</tr>
<tr>
<td>APT NHFR-CPP 5</td>
<td>24.71</td>
<td>2.45</td>
</tr>
<tr>
<td>APT NHFR-CPP 6</td>
<td>23.52</td>
<td>2.34</td>
</tr>
</tbody>
</table>

The samples were tested horizontal in the standard sample holder, as-is and without a wire grid. Laboratory conditions during testing were 73°F and 50% RH.

Results

The baseline plastic samples were subject to cone testing; all of the plastic was consumed. The average peak heat release rate at 50kW/m² incident heat flux was 1125 kW/m². The heat release rate profile consisted of a single peak. The APT-0385 FR samples swelled when exposed to radiant heat; a low-density char remained. The average peak heat release rate for the six APT NHFR samples was 145 kW/m².

1 Processed by Bardot Plastics Inc., 10 McFadden Road, Easton, PA 18045 Ph. 610-253-0600
The heat release rate profiles of the NHFR treated plastic consisted of two distinct peaks corresponding to the activation of the FR and its influence on burning behavior.

The cone test report of results for the baseline plastic and APT-0385 NHFR samples are attached to this report.

Conclusion

The average peak heat release rate of the polypropylene samples with APT0385 FR is below 150 kW/m² and therefore meets the requirements of the IFC for certain plastic receptacles.

Disclaimer

The findings in this report are based on plastic samples provided as being representative of the material to be used in the production of trash containers.

Testing and report by:

Elizabeth C. Buc, PhD,
PE Materials Engineer
Ph. 586-596-6736
September 17, 2018

Mr. Thomas M. Fitzgerald
T.M. Fitzgerald & Associates | TMF Corporation
850 West Chester Pike, Suite 200,
Havertown, PA 19083

RE: CONE CALORIMETER TEST RESULTS FOR PROJECT, VTB-0617, WITH NON-HALOGENATED FLAME RETARDANT, APT-0385, FOR USE IN PLASTIC TRASH RECEPTECLES

Mr. Fitzgerald:

The purpose of this letter is to provide you with the ASTM E1354 cone calorimeter report of results from recent testing of plastic samples for use in fabricating trash receptacles with improved fire performance.

Qualifications

Fire and Materials Research Laboratory LLC (FMRL) in Livonia, Michigan is an engineering consulting firm specializing in fire investigation, research and testing. FMRL is a forensic laboratory routinely characterizing the composition and response of various materials to heat and fire exposure. FMRL performs testing and analyses for government and major corporations and for compliance with Codes and standards. FMRL’s principal, Dr. Elizabeth Buc is a chemist, materials engineer, licensed professional engineer and certified fire investigator with over 20 years of professional experience in the fire sciences.

Purpose

The purpose of the cone calorimeter testing was to characterize and compare the heat release rate of a baseline polypropylene plastic (Bapolene 5065NB) and plastic samples prepared with loading APT-0385 non-halogen flame retardant. Specifically, the FR materials were examined for compliance with an IFC regulation for certain plastic trash receptacles that require the peak heat release rate less than 300 kW/m² when exposed to a 50kW/m² radiant heat source using ASTM E1354 (2017) Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter.
Cone Calorimeter Testing

The FTT cone calorimeter was calibrated and ASTM E1354 testing was performed on a total of five (5) baseline plastic samples and 8 samples with FR at 50kW/m² incident radiant heat flux on August 29 and September 7, 2018. All testing was documented with video recordings.

Description of Samples

Thirteen (13) black plastic samples, 5 baseline and 8 with FR, were cut from trash receptacles to 4-inch square test specimens. Both the baseline and FR APT-0385 samples were prepared according to the following processing parameters: temperature: 515 to 535°F; injection pressure: 1800 psi; packing pressure: 1100 psi; hold pressure: 560 psi; back pressure: 0 PSI; fill time: 4 seconds; and cushion: 0.5 inch.

The thickness and mass of each sample were recorded using calipers and a laboratory scale, respectively. The sample identification and data were entered into the ConeCalc™ software. The samples, summarized in Table 1, included:

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Mass (g)</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPP 1</td>
<td>21.10</td>
<td>2.3</td>
</tr>
<tr>
<td>CPP 2</td>
<td>21.32</td>
<td>2.32</td>
</tr>
<tr>
<td>CPP 3</td>
<td>20.77</td>
<td>2.27</td>
</tr>
<tr>
<td>CPP 4</td>
<td>21.19</td>
<td>2.30</td>
</tr>
<tr>
<td>CPP 5</td>
<td>18.69</td>
<td>2.11</td>
</tr>
<tr>
<td>10-90 APT-CPP 1</td>
<td>24.69</td>
<td>2.48</td>
</tr>
<tr>
<td>10-90 APT-CPP 2</td>
<td>24.86</td>
<td>2.54</td>
</tr>
<tr>
<td>10-90 APT-CPP 3</td>
<td>23.54</td>
<td>2.40</td>
</tr>
<tr>
<td>10-90 APT-CPP 4</td>
<td>25.98</td>
<td>2.60</td>
</tr>
<tr>
<td>10-90 APT-CPP 5</td>
<td>23.76</td>
<td>2.40</td>
</tr>
<tr>
<td>10-90 APT-CPP 6</td>
<td>26.51</td>
<td>2.55</td>
</tr>
<tr>
<td>10-90 APT-CPP 7</td>
<td>20.40</td>
<td>2.0</td>
</tr>
<tr>
<td>10-90 APT-CPP 8</td>
<td>20.40</td>
<td>2.0</td>
</tr>
</tbody>
</table>

The samples were tested horizontal in the standard sample holder, as-is and without a wire grid. Laboratory conditions during testing were 73°F and 50% RH.

Results

The baseline plastic samples were subject to cone testing; all of the plastic was consumed. The average peak heat release rate at 50kW/m² incident heat flux was 1060±96 kW/m². The heat release rate profile consisted of a single peak. The APT-0385 FR samples swelled when exposed to radiant heat; a low-density char remained. The average peak heat release rate for the eight APT FR samples was 229±28 kW/m². The heat release rate profiles of the FR treated plastic

1 Calibration included the load cell, oxygen analyzer and radiant heat source output.
2 Processed by Bardot Plastics Inc., 10 McFadden Road, Easton, PA 18045 Ph. 610-253-0600
consisted of two distinct peaks corresponding to the activation of the FR and its influence on burning behavior.

The cone test report of results for the baseline plastic and APT-0385 FR samples are attached to this report.

Conclusion

The average peak heat release rate of the polypropylene samples with APT-0385 FR is below 300 kW/m² and therefore meets the requirements of the IFC for certain plastic receptacles.

Disclaimer

The findings in this report are based on plastic samples provided as being representative of the material to be used in the production of trash containers.

Testing and report by:

Elizabeth C. Buc, PhD,
PE Materials Engineer
Ph. 586-596-6736
Survey on heat release rates for trash cans everywhere the requirement appears in the ICC Codes:

SECTION 304 COMBUSTIBLE WASTE MATERIAL

304.3 Containers. Combustible rubbish, and waste material kept within or near a structure shall be stored in accordance with Sections 304.3.1 through 304.3.4.

304.3.1 Spontaneous ignition. Materials susceptible to spontaneous ignition, such as oily rags, shall be stored in a listed disposal container. Contents of such containers shall be removed and disposed of daily.

304.3.2 Capacity exceeding 5.33 cubic feet. Containers with a capacity exceeding 5.33 cubic feet (40 gallons) (0.15 m³) shall be provided with lids. Containers and lids shall be constructed of noncombustible materials or of combustible materials with a peak rate of heat release not exceeding 300 kW/m² where tested in accordance with ASTM E 1354 at an incident heat flux of 50 kW/m² in the horizontal orientation.

Exception: Wastebaskets complying with Section 808.

304.3.3 Capacity exceeding 1.5 cubic yards. Dumpsters and containers with an individual capacity of 1.5 cubic yards [40.5 cubic feet (1.15 m³)] or more shall not be stored in buildings or placed within 5 feet (1524 mm) of combustible walls, openings or combustible roof eave lines.

Exceptions:

1. Dumpsters or containers in areas protected by an approved automatic sprinkler system installed throughout in accordance with Section 903.3.1.1, 903.3.1.2 or 903.3.1.3.

2. Storage in a structure shall not be prohibited where the structure is of Type I or IIA construction, located not less than 10 feet (3048 mm) from other buildings and used exclusively for dumpster or container storage.

304.3.4 Capacity of 1 cubic yard or more. Dumpsters with an individual capacity of 1.0 cubic yard [200 gallons (0.76 m³)] or more shall not be stored in buildings or placed within 5 feet (1524 mm) of combustible walls, openings or combustible roof eave lines unless the dumpsters are constructed of noncombustible materials or of combustible materials with a peak rate of heat release not exceeding 300 kW/m² where tested in accordance with ASTM E 1354 at an incident heat flux of 50 kW/m² in the horizontal orientation.

Exceptions:

1. Dumpsters in areas protected by an approved automatic sprinkler system installed throughout in accordance with Section 903.3.1.1, 903.3.1.2 or 903.3.1.3.

2. Storage in a structure shall not be prohibited where the structure is of Type I or IIA construction, located not less than 10 feet (3048 mm) from other buildings and used exclusively for dumpster or container storage.

SECTION 318 LAUNDRY CARTS
318.1 Laundry carts with a capacity of 1 cubic yard or more. Laundry carts with an individual capacity of 1 cubic yard (200 gallons (0.76 m³)) or more, used in laundries within Group B, E, F-1, I, M and R-1 occupancies, shall be constructed of noncombustible materials or materials having a peak rate of heat release not exceeding 300 kW/m² at a flux of 50 kW/m² where tested in a horizontal orientation in accordance with ASTM E 1354.

Exceptions:

1. Laundry carts in areas protected by an approved automatic sprinkler system installed throughout in accordance with Section 903.3.1.1.

2. Laundry carts in coin-operated laundries.

SECTION 808 FURNISHINGS OTHER THAN UPHOLSTERED FURNITURE AND MATTRESSES OR DECORATIVE MATERIALS IN NEW AND EXISTING BUILDINGS

808.1 Wastebaskets and linen containers in Group I-1, I-2 and I-3 occupancies. Wastebaskets, linen containers and other waste containers, including their lids, located in Group I-1, I-2 and I-3 occupancies shall be constructed of noncombustible materials or of materials that meet a peak rate of heat release not exceeding 300 kW/m² when tested in accordance with ASTM E 1354 at an incident heat flux of 50 kW/m² in the horizontal orientation. Metal wastebaskets and other metal waste containers with a capacity of 20 gallons (75.7 L) or more shall be listed in accordance with UL 1315 and shall be provided with a noncombustible lid. Portable containers exceeding 32 gallons (121 L) shall be stored in an area classified as a waste and linen collection room and constructed in accordance with Table 509 of the International Building Code.

808.2 Waste containers with a capacity of 20 gallons or more in Group R-2 college and university dormitories. Waste containers, including their lids, located in Group R-2 college and university dormitories, and with a capacity of 20 gallons (75.7 L) or more, shall be constructed of noncombustible materials or of materials that meet a peak rate of heat release not exceeding 300 kW/m² when tested in accordance with ASTM E 1354 at an incident heat flux of 50 kW/m² in the horizontal orientation. Metal wastebaskets and other metal waste containers with a capacity of 20 gallons (75.7 L) or more shall be listed in accordance with UL 1315 and shall be provided with a noncombustible lid. Portable containers exceeding 32 gallons (121 L) shall be stored in an area classified as a waste and linen collection room constructed in accordance with Table 509 of the International Building Code.

SECTION 2310 MARINE MOTOR FUEL-DISPENSING FACILITIES

2310.5.3 Rubbish containers. Containers with tight-fitting or self-closing lids shall be provided for temporary storage of combustible debris, rubbish and waste material. The rubbish containers shall be constructed entirely of materials that comply with any one of the following:

1. Noncombustible materials.

2. Materials that meet a peak rate of heat release not exceeding 300 kW/m² when tested in accordance with ASTM E 1354 at an incident heat flux of 50 kW/m² in the horizontal orientation.

CHAPTER 33 FIRE SAFETY DURING CONSTRUCTION AND DEMOLITION
3304.2.3 Rubbish containers. Where rubbish containers with a capacity exceeding 5.33 cubic feet (40 gallons) (0.15 m3) are used for temporary storage of combustible debris, rubbish and waste material, they shall have tight-fitting or self-closing lids. Such rubbish containers shall be constructed entirely of materials that comply with either of the following:

1. Noncombustible materials.

2. Materials that meet a peak rate of heat release not exceeding 300 kW/m2 when tested in accordance with ASTM E 1354 at an incident heat flux of 50 kW/m2 in the horizontal orientation.

CHAPTER 36 MARINAS

3603.4 Rubbish containers. Containers with tight-fitting or self-closing lids shall be provided for temporary storage of combustible debris, rubbish and waste material. The rubbish containers shall be constructed entirely of materials that comply with any one of the following:

1. Noncombustible materials.

2. Materials that meet a peak rate of heat release not exceeding 300 kW/m2 when tested in accordance with ASTM E 1354 at an incident heat flux of 50 kW/m2 in the horizontal orientation.